Tetrahedron Letters, Vol.30, No.6, pp 731-734, 1989 0040-4039/89 \$3.00 + .00 Printed in Great Britain Pergamon Press plc

DIASTEREOSELECTIVE PREPARATION OF ANTI-β-AMINO ALCOHOLS VIA MICHAEL ADDITION OF ALKOXIDE ANIONS TO NITROOLEFINS AND SUBSEQUENT HYDROGENATION REACTION

Akio Kamimura* and Noboru Ono*+

Department of Chemistry, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi 753, Japan *Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan

Summary: Diastereoselective conjugate addition of benzylalkoxide anion to nitroolefins and subsequent hydrogenation reaction provide a new convenient method for the preparation of anti-β-amino alcohols.

As nitroolefins are remarkably electron deficient owing to strong electron withdrawing ability of the nitro group, they are powerful synthetic intermediates in organic reactions.¹ For example, Michael type addition of various kinds of nucleophiles to nitroolefins is one of versatile synthetic methods in organic chemistry. This reaction has been used very frequently 2 and metal enolates 3,4, enamines,5 trialkyl aluminums,⁶ allyl silanes,⁷ and allyl stannanes⁸ serve as effective carbon nucleophiles to form carbon-carbon bonds. Stereochemical investigation of this reaction has been of interest. Recently, Seebach⁵ and Mukaiyama⁴ have succeeded in the stereo control of Michael addition to nitroolefins using enamines and tin(II) enclates, respectively. Although nitrogen-, oxygen-, sulfur, and phosphoratom centered nucleophiles are also effective nucleophiles to nitroolefins, there have been a few reports concerning stereochemical control in the reation of these nucleophiles.¹ Previously, we reported stereocontrolled Michael type addition of thiols⁹ or selenols¹⁰ to nitroolefins. In this paper, we report stereoselective Michael type addition of alkoxide anions to nitroolefins to give anti- β -nitro ethers 1. Further, as 1 can be readily converted into O-protected β-amino alcohols 3 or free β-amino alcohols 4, this method provides a new preparation of anti-β-amino alcohols from nitroolefins. β-Amino alcohols exist widely in natural compounds and they have been often synthetic targets or used as chiral auxiliary for asymmetric synthesis,11

2-Nitro-2-butene (1.185 g, 11.7 mmol) was added to the solution of sodium benzylalkoxide (3 equiv.), which was generated *in situ* by 60% sodium hydride (1.41 g) and benzylalcohol (3.90 g), in tetrahydrofuran (THF, 20 mL), then the resulting solution was stirred at room temperature for 48 h. The solution was cooled at -78 °C and acetic acid (5 mL) was added. After stirring for 2 h, the reaction mixture was poured into water. Following usual work up and purification by flush column chromatography (silica gel; hexane-ethyl acetate 20:1) gave 2-benzyloxy-3-nitrobutane **1a** (1.172 g, 72%). Other β -nitro ethers **1** were prepared by this procedure (Scheme 1). The results are summarized in Table 1.

Scheme 1

run	R ¹	R ²	R ³	м+	time (h)	yield((%)a)	ratio anti/syn ^{b)}
1	Me	Me	PhCH ₂	Na	48	1a	72	88/12
2	Me	Me	PhCH2	Li	48	1a	55	88/12
3	Me	Me	PhCH ₂	ĸ	48	1a	49	88/12
4	Me	Me	PhCH ₂ CH ₂	Na	36	1b	63	90/10
5	Me	Me	PhCH ₂ CH ₂ CH ₂	Na	48	1c	61	93/7
6	PhCH ₂ CH ₂	Me	Me	Na	24	14	42	90/10
7	Et	Me	PhCH2	Na	36	1 e	62	86/14
8	C5H11	Me	PhCH2	Na	72	1f	68	85/15
9	Ph	Me	PhCH ₂	Na	36	1g	70	67/33
10	i-Pr	Me	PhCH ₂	Na	24	1 h	54	66/34
11	Et	Et	PhCH ₂	Na	36	1i	61	94/6
12	Me	Ph	PhCH ₂	Na	36	1 j	73	91/9c)
13	Me	C5H11	PhCH ₂	Na	48	1 k	42	92/ 8
14	-(CH2)4-		PhCH ₂	Na	48	11	71	96/4 ^d)

Table 1. Preparation of β-nitro ethers 1

a) Isolated yield. b) Determined by HPLC. c) Determined by 250 MHz ¹H-NMR. d) Ratio of cis/trans.

The stereochemistry of 1 was determined by ¹³C-NMR spectra.¹² Potassium and lithium are also used as counter cation with the same extent of stereoselectivity as using sodium (run 1-3). Various kinds of alcohols, such as β -phenylethyl alcohol, γ -phenylpropyl alcohol, or methanol can be used for this reaction to give anti-1 selectively (run 4-6). Sterically hindered R¹ groups, such as i-Pr or Ph group, diminish the anti-selectivity (run 9, 10). On the other hands, R² groups do not affect the anti-selectivity (run 11-13). The reaction of the alkoxide with a cyclic nitroolefin gave cis-11 with high stereoselectivity (run 14).

When anti-rich 1f was treated with a catalytic amount of triethylamine in acetonitrile at room temperature for 24 h, the ratio of anti/syn was shifted to a thermodynamically controlled mixture of antiand syn-1f. This mixture was readily converted into anti-rich 1f by deprotonation-protonation at -78 °C (Scheme 2).

Scheme 2

The reason for this stereo selection may be explained as shown in Scheme 3. Namely, protonation to intermediate 2 can occur more preferentially from the less-hindered left site than the right site.^{9,10}

The nitro groups of 1 were readily reduced to amino groups in the presence of a catalyst under the conditions of hydrogen at 35-40 atm in ethanol in good yield. Neutral Raney-Ni or 10% Pd/C was effective as a catalyst. Epimerization on the carbon adjacent to the nitro group did not take place. It is noteworthy that *O*-benzyl group cannot be removed under these conditions (Scheme 4).¹³

Scheme 4

One step conversion of 1 into β -amino alcohols 4 was achieved in good yield by the catalytic hydrogenation using ethanol-conc. HCl (10:1) as solvent (Scheme 5).¹⁴ Anti configuration of 4 was assigned by ¹H-NMR.¹⁵ Thus, 1 is converted into *O*-protected β -amino alcohols 3 or free β -amino alcohols 4 by the method shown in Scheme 4 or 5, respectively. As many kinds of nitroolefins are readily available, this method provides a new method for preparing anti- β -amino alcohols.

10% Pd/C, H ₂ , 40 atm		4	r ¹	R ²	yield(%) ^{a)}	anti/syn ^b	
EtOH-conc.HCl (10:1) 40 ^o C, 12 h	≚ H∸ ŌH	<u>4a</u>	с _{5^н11}	Me	64	86/14	
		<u>4b</u>	Et	Et	49	80/20	
	4	<u>4c</u>	Me	с ₅ н ₁	1 72	88/12	
		<u>4d</u>	Me	Ph	72	91/9	
		a) Isolated yield.					
		b)	Determ	ined b	у 250 МНг	¹ H-NMR.	

References and Notes

- Barrett, A. G. M.; Graboski, G. G. *Chem. Rev.* 1986, **86**, 751; Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T. *Chimia*, 1979, **33**, 1.
- 2. Houben-Weyl: Methoden der Organische Chemie; Muller, E. Ed.; George Thime Verlag: Stuttgart, 1971; Vol 10/1, pp9-462.
- 3. Yoshikoshi, A.; Miyashita, M. Acc. Chem. Res. 1985, 18, 284.
- 4. Stevens, R. W.; Mukaiyama, T. Chem. Lett. 1985, 855.
- 5. Seebach, D.; Golinski, J. *Helv. Chim. Acta* 1981, **64**, 1413; Seebach, D.; Brook, M. A. *Helv. Chim. Acta* 1985, **68**, 319.
- 6. Pecunioso, A.; Menicagli, R. J. Org. Chem. 1988, 53, 45.
- Ochiai, M.; Arimoto, M.; Fujita, E. Tetrahedron Lett. 1981, 22, 1115; Uno, H.; Fujiki, S.; Suzuki, H. Bull. Chem. Soc. Jpn. 1986, 59, 1267.
- 8. Uno, H.; Watanabe, N.; Fujiki, S.; Suzuki, H. *Synthesis*, **1987**, 471; Yamamoto, Y.; Nishii, S. *J. Org. Chem.* **1988**, **53**, 3597
- Ono, N.; Kamimura, A.; Sasatani, H.; Kaji, A. J. Org. Chem. 1987, 52, 4133; Kamimura, A.; Ono, N. J. Chem. Soc., Chem. Commun. 1988, 1278.
- 10. Ono, N.; Kamimura, A.; Kawai, T.; Kaji, A. J. Chem. Soc., Chem. Commun. 1987, 1550.
- 11. Scott. J. W. in Asymmetric Synthesis; Vol. 4, Chapter 1; Morrison, J. D. Ed.; Academic Press, New York, 1984.
- 12. The stereochemistry of acyclic 1 is determined by ¹³C-NMR spectra as following. C¹ signal for major isomer of 1f appears at 12.884 ppm, and that of minor isomer of 1f appears at 15.554 ppm. α-O₂N-C (C²) signals at 84.668 ppm for major isomer of 1f and 85.717 ppm for minor one. The same tendencies on ¹³C-NMR spectra are also observed for Seebach's *O*-silylated nitroaldols. Thus, these data clearly establish the relative stereochemistries of major-1f and minor-1f as anti-1f and syn-1f, respectively. see; ref 16.

- 13. Greene, T. W. Protective Groups in Organic Synthesis; John Wiley & Sons, New York, 1981.
- 14. Tamura, R.; Oda, D.; Kurokawa, H. Tetrahedron Lett. 1986, 27, 5759.
- 15. For example, ¹H-NMR spectra of **4a** and **4b** were identical with literature data.¹⁶
- Seebach, D.; Beck, A. K.; Mukhopadhyay, T.; Thomas, E. *Helv. Chim. Acta* 1982, 65, 1101; Eyer, M.; Seebach, D. *J. Am. Chem. Soc.* 1985, 107, 3601.

The present work was partially supported by a Grant-in-Aid for Scientific Research (No 63740291) from the Ministry of Education, Science and Culture.

(Received in Japan 29 November 1988)